Identification of novel tylosin analogues generated by a wblA disruption mutant of Streptomyces ansochromogenes
نویسندگان
چکیده
BACKGROUND Streptomyces, as the main source of antibiotics, has been intensively exploited for discovering new drug candidates to combat the evolving pathogens. Disruption of wblA, an actinobacteria-specific gene controlling major developmental transition, can cause the alteration of phenotype and morphology in many species of Streptomyces. One wblA homologue was found in Streptomyces ansochromogenes 7100 by using the Basic Local Alignment Search Tool. It is interesting to identify whether novel secondary metabolites could be produced by the wblA disruption mutant as evidenced in other Streptomyces. RESULTS The wblA disruption mutant of S. ansochromogenes 7100 (ΔwblA) was constructed by homologous recombination. ΔwblA failed to produce spores and nikkomycin, the major product of S. ansochromogenes 7100 (wild-type strain) during fermentation. Antibacterial activity against Staphylococcus aureus and Bacillus cereus was observed with fermentation broth of ΔwblA but not with that of the wild-type strain. To identify the antibacterial compounds, the two compounds (compound 1 and compound 2) produced by ΔwblA were characterized as 16-membered macrolides by mass spectrometry and nuclear magnetic resonance spectroscopy. The chemical structure of these compounds shows similarity with tylosin, and the bioassays indicated that the two compounds inhibited the growth of a number of gram-positive bacteria. It is intriguing that they displayed much higher activity than tylosin against Streptococcus pneumoniae. CONCLUSIONS Two novel tylosin analogues (compound 1 and 2) were generated by ΔwblA. Bioassays showed that compound 1 and 2 displayed much higher activity than tylosin against Streptococcus pneumoniae, implying that these two compounds might be used to widen the application of tylosin.
منابع مشابه
Novel nikkomycin analogues generated by mutasynthesis in Streptomyces ansochromogenes
BACKGROUND Nikkomycins are competitive inhibitors of chitin synthase and inhibit the growth of filamentous fungi, insects, acarids and yeasts. The gene cluster responsible for biosynthesis of nikkomycins has been cloned and the biosynthetic pathway was elucidated at the genetic, enzymatic and regulatory levels. RESULTS Streptomyces ansochromogenes ΔsanL was constructed by homologous recombina...
متن کاملRepression of antibiotic downregulator WblA by AdpA in Streptomyces coelicolor.
The upstream region of antibiotic downregulatory wblA in Streptomyces coelicolor was found to contain AdpA binding motifs. A key morphological regulator, AdpA was shown to specifically bind these motifs by electrophoretic mobility shift assay. An adpA disruption mutant exhibited increased wblA transcription, suggesting that AdpA negatively regulates wblA transcription in S. coelicolor.
متن کاملPutative TetR family transcriptional regulator SCO1712 encodes an antibiotic downregulator in Streptomyces coelicolor.
A tetR family transcriptional regulatory gene (SCO1712) was identified as a global antibiotic regulatory gene from a Streptomyces interspecies DNA microarray analysis. SCO1712 disruption in Streptomyces coelicolor not only upregulated antibiotic biosynthesis through pathway-specific regulators when a previously identified pleiotropic downregulatory wblA was expressed but also further stimulated...
متن کاملTranscriptome analysis of an antibiotic downregulator mutant and synergistic Actinorhodin stimulation via disruption of a precursor flux regulator in Streptomyces coelicolor.
Through microarray analysis of an antibiotic-downregulator-deleted Streptomyces coelicolor ΔwblA ΔSCO1712 mutant, 28 wblA- and SCO1712-dependent genes were identified and characterized. Among 14 wblA- and SCO1712-independent genes, a carbon flux regulating 6-phosphofructokinase SCO5426 was additionally disrupted in the ΔwblA ΔSCO1712 mutant and further stimulated actinorhodin production in S. c...
متن کاملNovel polyoxins generated by heterologously expressing polyoxin biosynthetic gene cluster in the sanN inactivated mutant of Streptomyces ansochromogenes
BACKGROUND Polyoxins are potent inhibitors of chitin synthetases in fungi and insects. The gene cluster responsible for biosynthesis of polyoxins has been cloned and sequenced from Streptomyces cacaoi and tens of polyoxin analogs have been identified already. RESULTS The polyoxin biosynthetic gene cluster from Streptomyces cacaoi was heterologously expressed in the sanN inactivated mutant of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2015